What Is a Microsatellite: A Computational and Experimental Definition Based upon Repeat Mutational Behavior at A/T and GT/AC Repeats
نویسندگان
چکیده
Microsatellites are abundant in eukaryotic genomes and have high rates of strand slippage-induced repeat number alterations. They are popular genetic markers, and their mutations are associated with numerous neurological diseases. However, the minimal number of repeats required to constitute a microsatellite has been debated, and a definition of a microsatellite that considers its mutational behavior has been lacking. To define a microsatellite, we investigated slippage dynamics for a range of repeat sizes, utilizing two approaches. Computationally, we assessed length polymorphism at repeat loci in ten ENCODE regions resequenced in four human populations, assuming that the occurrence of polymorphism reflects strand slippage rates. Experimentally, we determined the in vitro DNA polymerase-mediated strand slippage error rates as a function of repeat number. In both approaches, we compared strand slippage rates at tandem repeats with the background slippage rates. We observed two distinct modes of mutational behavior. At small repeat numbers, slippage rates were low and indistinguishable from background measurements. A marked transition in mutability was observed as the repeat array lengthened, such that slippage rates at large repeat numbers were significantly higher than the background rates. For both mononucleotide and dinucleotide microsatellites studied, the transition length corresponded to a similar number of nucleotides (approximately 10). Thus, microsatellite threshold is determined not by the presence/absence of strand slippage at repeats but by an abrupt alteration in slippage rates relative to background. These findings have implications for understanding microsatellite mutagenesis, standardization of genome-wide microsatellite analyses, and predicting polymorphism levels of individual microsatellite loci.
منابع مشابه
Microsatellite mutation models: insights from a comparison of humans and chimpanzees.
Using genomic data from homologous microsatellite loci of pure AC repeats in humans and chimpanzees, several models of microsatellite evolution are tested and compared using likelihood-ratio tests and the Akaike information criterion. A proportional-rate, linear-biased, one-phase model emerges as the best model. A focal length toward which the mutational and/or substitutional process is linearl...
متن کاملP-70: Study of GTn-Repeat Expansion in Heme Oxygenase-1 Gene Promoter As Genetic Cause of Male Infertility
Background: The length of GT-repeats polymorphic region in the promoter of human Heme oxygenase-1 gene (HO-1) alters the level of its transcriptional activity in response to oxidative stresses. Decreased level of HO-1 protein in the seminal plasma has been reported to be associated with oligospermia and azoospermia in male infertility. This is the first study to investigate the association betw...
متن کاملGenomic instability of microsatellite repeats and mutations of H-, K-, and N-ras, and p53 genes in renal cell carcinoma.
Thirty-six primary renal cell carcinoma samples and one metastatic lymph node DNA sample were examined for mutations of H-, K-, and N-ras and p53 genes, and genomic instability at (AC)n, (CA)n.(GT)n, and (TA)n.(GT)n repeats. No mutations were noted for H-, K-, and N-ras genes and only 2 of all the samples (5.6%) showed mutations at exon 8 of the p53 gene. Differences in unrelated microsatellite...
متن کاملCharacterization of (GT)n and (CT)n microsatellites in two insect species: Apis mellifera and Bombus terrestris.
A set of 52 (CT)n and 23 (GT)n microsatellites in honeybee, 24 (CT)n and 2 (GT)n microsatellites in bumble-bee (n > 6) have been isolated from partial genomic libraries and sequenced. On average, (CT)n and (GT)n microsatellites occur every 15 kb and 34 kb in honeybee and every 40 kb and 500 kb in bumble-bee, respectively. The prevailing categories are imperfect repeats for (CT)n microsatellites...
متن کاملMature Microsatellites: Mechanisms Underlying Dinucleotide Microsatellite Mutational Biases in Human Cells
Dinucleotide microsatellites are dynamic DNA sequences that affect genome stability. Here, we focused on mature microsatellites, defined as pure repeats of lengths above the threshold and unlikely to mutate below it in a single mutational event. We investigated the prevalence and mutational behavior of these sequences by using human genome sequence data, human cells in culture, and purified DNA...
متن کامل